

SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING INSTITUTE

Member of www.eota.eu

Dimičeva 12, 1000 Ljubljana, Slovenija

Tel.: +386 (0)1 280 44 72, +386 (0)1-280 45 37

Fax: +386 (0)1 280 44 84 e-mail: info.ta@zag.si http://www.zag.si

European Technical Assessment

et A-17/0638 of 6. 4. 2020

English version prepared by ZAG

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This version replaces

This European Technical Assessment is issued in according to Regulation (EU) No 305/2011, on the basis of

ZAG Ljubljana

TX1 / TX1 A4

33: Torque controlled expansion anchor of sizes M8, M10, M12 and M16 for use in cracked and non-cracked concrete

AS SYSTEM d.o.o. Obrtniška ulica 14 3240 Šmarje pri Jelšah Slovenia

www.as-system.si

AS SYSTEM d.o.o. Obrtniška ulica 14 3240 Šmarje pri Jelšah Slovenia

12 pages including 10 annexes, which form an integral part of the document

ETA-17/0638 issued on 02.10.2017

EAD 330232-00-0601, edition October 2016

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Parts

1 Technical description of the product

The TX1 and TX1 A4 in the range of M8, M10, M12 and M16 is an anchor made of galvanised steel (TX1) and stainless steel (TX1 A4), which is placed into a drilled hole and anchored by torque-controlled expansion.

An illustration and description of the anchor are given in Annexes A1 and A2.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Chapter 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for this assessment

3.1 Mechanical resistance and stability (BWR 1)

The basic work requirements for mechanical resistance and stability are listed in Annexes C1 and C2.

3.2 Safety in case of fire (BWR 2)

The basic work requirements for safety in case of fire are listed in Annexes C3 and C4.

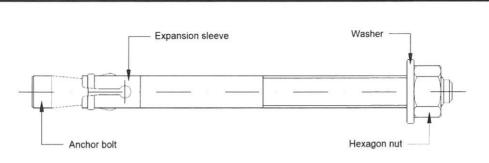
3.8 General aspects relating to fitness for use

Durability and serviceability are only ensured if specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

According to the decision 96/582/EC of the European Commission¹ the system of assessment and verification of constancy of performance (see Annex V to regulation (EU) No 305/2011) 1 apply.

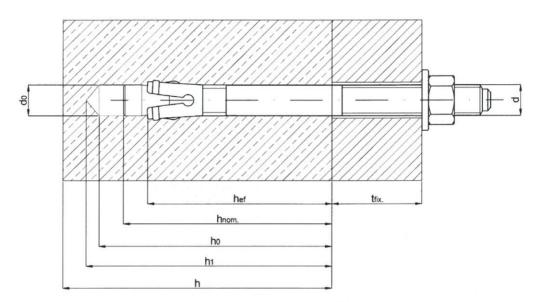
5 Technical details necessary for the implementation of the AVCP system


Technical details necessary for the implementation of the AVCP system are laid down in chapter 3 of EAD 330232-00-0601.

Issued in Ljubljana on 6, 4. 2020

Franc Capuder, M.Sc., Research Engineer

Head of Service of TAB


Official Journal of the European Communities L 254 of 8.10.1996

Marking on the sleeve:

Product name: (TX1 or TX1 A4)

Diameter of an anchor: (e.g. M12)

h_{ef}	effective anchorage depth
h_{nom}	anchor embedment depth

h₀ depth of cylindrical drill hole at shoulder

h₁ hole depth

h thickness of concrete member

d₀ drill hole diameter

d anchor bolt/thread diameter thickness of the fixture

RADBENISTION STONE OF THE PROPERTY AND STONE OF THE PROPERTY O

TX1 / TX1 A4

Product description

Product and intended use

Annex A1

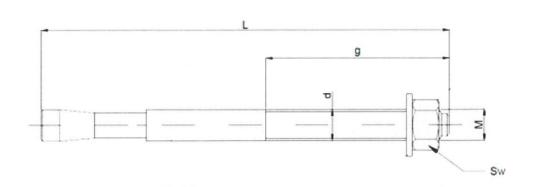


Table A1: Dimensions

			M8	M10	M12	M16
Bolt	L _{min}	[mm]	50	60	70	90
	L _{max}	[mm]	300	400	400	700
	d	[mm]	8	10	12	16
	g _{min}	[mm]	10	30	20	40
	g _{max}	[mm]	70	100	100	100
Hexagonal nut	S _w	[mm]	13	17	19	24

TX1 / TX1 A4

Intended use
Dimensions of an anchor

Table A2: Materials

Part	Designation	Material	
		TX1	TX1 A4
1	Bolt	Galvanised steel, thickness of galvanisation ≥ 5μm	Stainless steel
2	Expansion sleeve	Galvanised steel, thickness of galvanisation ≥ 5μm	Carbon steel with Zn-Ni coating
3	Washer	Galvanised steel acc. to DIN 125 / EN ISO 7089, DIN 9021 / EN ISO 7093 or DIN 440 / EN ISO 7094	Stainless steel acc. to DIN 125 / EN ISO 7089, DIN 9021 / EN ISO 7093 or DIN 440 / EN ISO 7094
4	Hexagon nut	Galvanised steel acc. to DIN 934	Stainless steel acc. to DIN 934

TX1 / TX1 A4

Product description

Materials

Annex A3

Specifications of intended use

Anchorages subjected to:

- Static and quasi static load.
- · Fire exposure.

Base materials:

- Cracked and non-cracked concrete.
- Reinforced and unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according to EN 206:2013+A1:2016.

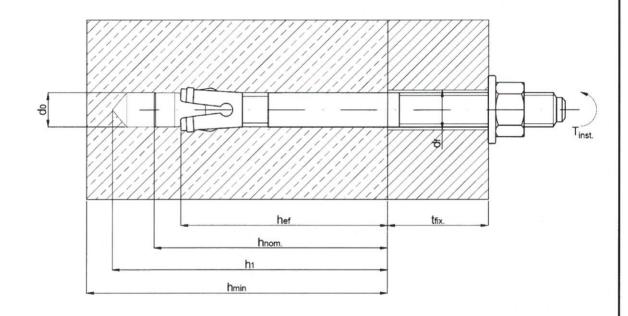
Use conditions (Environmental conditions):

- The TX1 anchors may be used in concrete subject to dry internal conditions.
- The TX1 A4 anchors may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.

 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static and quasi-static actions are designed in accordance with EOTA TR 055, Edition December 2016 or EN 1992-4:2018.
- For application with resistance under fire exposure the anchorages are designed in accordance with the method given in EOTA TR 020, Edition May 2004.
- Verifiable calculation notes and drawings are prepared taking into account of the load to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).


Installation:

- Anchor installation carried out by appropriately qualified personnel and under supervision of the person responsible for technical matters of the site.
- Use of the anchor only supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specification and drawings and using the appropriate tools.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the
 anchor is to be placed is in the rang given and is not lower that of the concrete to which the
 characteristic loads apply for.
- Check of concrete being well compacted, e.g. without significant voids.
- Cleaning of the hole of drilling dust.
- Anchor installation ensuring the specified embedment depth.
- Keeping of the edge distance and spacing to the specified values without minus tolerances.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength non-shrinkage mortar. No shear or oblique tension loads are allowed in the direction of a not filled aborted hole.
- Application of the torque moment given in Annex B2 using a calibrated torque wrench.

	0 17 5//
TX1 / TX1 A4	745 35 1
Intended use	Annex B1
Specification	

Table B1: Installation data

			M8	M10	M12	M16
Nominal drill hole diameter	d ₀	[mm]	8	10	12	16
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	8,45	10,45	12,50	16,5
Diameter of clearance hole of the fixture	d_{f}	[mm]	9	12	14	18
Depth of drill hole	h₁ ≥	[mm]	65	70	90	120
Embedment depth	h _{nom}	[mm]	55	60	80	100
Minimum thickness of the concrete member	h _{min}	[mm]	100	120	140	160
Effective embedment	h _{ef}	[mm]	41	45	62	88
Torque moment	T _{inst}	[Nm]	15	25	65	110
Thickness of the fixture - minimum	t _{fix,min}	[mm]	0	0	0	0
Thickness of the fixture - maximum	t _{fix,max}	[mm]	245	340	320	600

Non cracked concrete only			M8	M10	M12	M16
Effective anchorage depth	h _{ef}	[mm]	41	45	62	88
Minimum spacing	S _{min}	[mm]	45	60	70	60
Minimum edge distance	C _{min}	[mm]	45	70	85	70

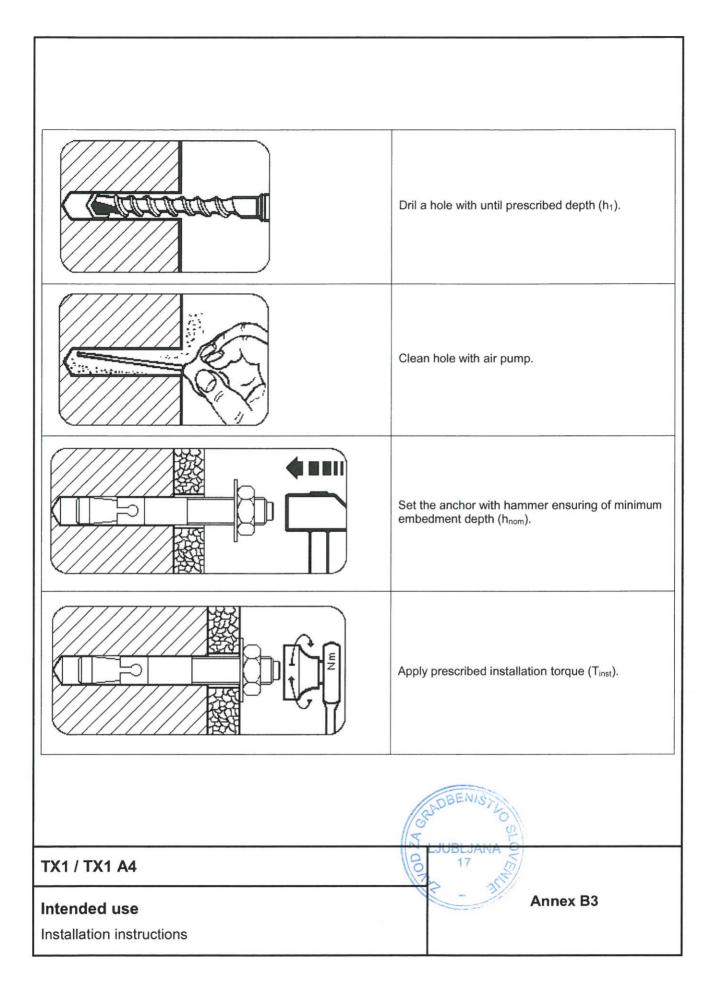


Table C1: Characteristic resistances under tension loads in case of static and quasi-static loading for design according EOTA TR 055 or EN 1992-4

Essential characteristics					Performance			
				M8	M10	M12	M16	
Installation					1 10	1.0	10	
d ₀	Nominal diameter of drill bit		[mm]	8	10	12	16	
h _{nom}	Anchorage depth			55	60	80	100	
hef	Effective anchorage depth	3300	[mm]	41	45	62	88	
h _{min}		nimum thickness of concrete member		100	120	140	160	
Tinst	Torque moment		[Nm] [mm]	15	25	65	110	
Smin	Minimum spacing			45	60	70	60	
Cmin	Minimum edge distance		[mm]	45	70	85	70	
Tension ste	el failure mode							
N _{Rk,s}	Characteristic tension steel failure	TX1	[kN]	15	22	45	68	
	Characteriotic terroriori otechnique	TX1 A4	[kN]	15	25	47	79	
YMsN ²⁾	Partial safety factor	TX1	[-]			1,4		
	IXI A4		[-]	1,4				
Pull-out faile								
N _{Rk,p}	Characteristic pull-out failure in non-cracked con-		[kN]	/1)	11	18	25	
N _{Rk,p}	Characteristic pull-out failure in cracked concrete)	[kN]	4	6	8	18	
$\gamma_2^{(2)}$	Partial safety factor		[-]	1,0				
γ _{Mp} ³⁾			[-]	1,5				
Scr,N	Characteristic spacing		[mm]	3 x h _{ef}				
Ccr,N	Characteristic edge distance		[mm]	1,5 x h _{ef}				
ψc C30/37			[-]	1,00	1,08	1,22	1,21	
ψc C40/50	Increasing factor for N _{Rk,p}		[-]	1,00	1,14	1,41	1,39	
ψc C50/60			[-]	1,00	1,20	1,58	1,55	
Concrete co	ne failure mode		82143 a la					
kcr	Factor for cracked concrete EN 1992-4-4 §. 7.2.1.4		[-]			7,7		
Kucr	Factor for un-cracked concrete EN 1992-4-4 §. 7.2.1.4		[-]		1	1,0		
γMc ²⁾	Partial safety factor		[-]			1,5		
Splitting fail								
Scr,sp	Characteristic spacing		[mm]		3	x h _{ef}		
C _{cr,sp}	Characteristic edge distance		[mm]		1.5	x h _{ef}		
γMc ²⁾	Partial safety factor		[-]			1,5		
	nt under tension load						1996	
	concrete C20/25		ALL PROPERTY AND ADDRESS OF THE PARTY AND ADDR					
N	Service tension load		[kN]	6,2	5,2	8,6	11,9	
δηο	Short term displacement		[mm]	0,12	0,06	0,05	0,17	
δηω	Long term displacement		[mm]	1,56	1,59	1,73	1,65	
Cracked cond		A	[]	.,00	.,00	.,,,	.,00	
N	Service tension load		[kN]	1,9	2,9	3,8	8,6	
δηο	Short term displacement		[mm]	0,83	0,80	0,49	1,40	
							1,65	
δno δn _∞	Long term displacement		[mm]	1,56	1,59	1,73		

TX1 / TX1 A4

Design acc. EOTA TR 055 or EN 1992-4

Characteristic resistance under Tension loads - BWR 1

¹⁾ The pull-out is not decisive 2) In absence of other national regulations

 $^{^{3)}}$ The installation safety factor $\gamma \text{Mp}^{\text{=}}$ 1,0 is included

Table C2: Characteristic resistances under shear loads in case of static and quasi-static loadingfor design according EOTA TR 055 or CEN/TS 1992-4

Farantial	ah			Performance				
Essentiai	Essential characteristics			M8	M10	M12	M16	
Shear ste	el failure mode							
V	Characteristic shear steel failure Characteristic shear steel failure Characteristic shear steel failure Bending moment characteristic failure Partial safety factor Chear concrete pry-out and edge failure Factor for equations in EN 1992-4 § 7.2.2.4 Effective anchorage depth Diameter of anchor Displacement under shear load Service shear load Short term displacement	TX1	[kN]	9,6	15,4	21,3	37,0	
VRk,s		TX1 A4	[kN]	18,7	28,1	52,0	70,6	
MO	Mork,s Bending moment characteristic failure Mork,s Partial safety factor Shear concrete pry-out and edge failure Ks Factor for equations in EN 1992-4 § 7.2.2.4 ef Effective anchorage depth Choom Diameter of anchor Displacement under shear load V Service shear load Sou Short term displacement	TX1	[Nm]	25	51	92	200	
IVIORk,s		TX1 A4	[Nm]	26	52	95	233	
y _{Msv} 1) Partial safety factor	TX1	[-]	1,5					
γMsV ¹⁾	sv ¹⁾ Partial safety factor		[-]	1,5				
Shear con	crete pry-out and edge failure							
k ₈			[-]	1,	0	2	,0	
lef	Effective anchorage depth		[mm]	41	45	62	88	
d _{nom}	Diameter of anchor		[mm]	8	10	12	16	
Displacen	nent under shear load				to entre			
٧	Service shear load		[kN]	4,6	7,3	10,1	17,6	
δνο	Short term displacement		[mm]	0,85	1,43	1,12	1,35	
δν∞	Long term displacement		[mm]	1,28	2,15	1,67	2,03	

¹⁾ In absence of other national regulations

TX1 / TX1 A4

Design acc. to EOTA TR 055 or EN 1992-4

Characteristic resistance under Shear loads - BWR 1

Table C3: Characteristic resistance under tension loads in case of fire exposure for design acc. to EOTA TR 020 or EN 1992-4

Essential characteristics			Performance					
Essential cr	laracteristics		M8	M10	M12	M16		
Tension ste	el failure mode							
TX1								
N _{Rk,s,fi,30}	Duration = 30 minutes	[kN]	0,22	0,48	1,33	2,26		
N _{Rk,s,fi,60}	Duration = 60 minutes	[kN]	0,20	0,42	1,00	1,70		
N _{Rk,s,fi,90}	Duration = 90 minutes	[kN]	0,15	0,32	0,86	1,47		
NRk,s,fi,120	Duration = 120 minutes	[kN]	0,11	0,26	0,66	1,13		
TX1 A4								
NRk,s,fi,30	Duration = 30 minutes	[kN]	0,44	0,81	2,00	3,39		
N _{Rk,s,fi,60}	Duration = 60 minutes	[kN]	0,35	0,65	1,33	2,26		
N _{Rk,s,fi,90}	Duration = 90 minutes	[kN]	0,26	0,52	1,07	1,81		
NRk,s,fi,120	Duration = 120 minutes	[kN]	0,22	0,31	0,93	1,58		
Pull-out fail	ure mode							
N _{Rk,p,fi,30}	Duration = 30 minutes	[kN]	1,00	1,50	2,00	4,5		
NRk,p,fi,60	Duration = 60 minutes	[kN]	1,00	1,50	2,00	4,5		
N _{Rk,p,fi,90}	Duration = 90 minutes	[kN]	1,00	1,50	2,00	4,5		
N _{Rk,p,fi,120}	Duration = 120 minutes	[kN]	0,80	1,20	1,60	3,6		
Concrete co	one failure mode ¹⁾							
N _{Rk,c,fi,30}	Duration = 30 minutes	[kN]	1,85	2,34	5,21	12,51		
NRk,c,fi,60	Duration = 60 minutes	[kN]	1,85	2,34	5,21	12,51		
NRk,c,fi,90	Duration = 90 minutes	[kN]	1,85	2,34	5,21	12,51		
NRk,c,fi,120	Duration = 120 minutes	[kN]	1,48	1,87	4,17	10,01		
Scr,N	Characteristic spacing	[mm]	4 x h _{ef}					
Ccr,N	Characteristic edge distance	[mm]	2 x h _{ef}					
Smin	Minimum spacing	[mm]	45	60	70	60		
Cmin	Minimum edge distance	[mm]	the edg	ack from	= 2 h _{ef} ; more than e of the an	chor has		

 $^{^{1)}}$ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 § 2.2.1. In the absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M:fi} = 1,0$ is recommended.

TX1 / TX1 A4

Design according to EOTA TR 020

Characteristic tension resistance under fire exposure - BWR 2

Table C4: Characteristic resistance under shear loads in case of fire exposure for design acc. to EOTA TR 020 or EN 1992-4

Essential characteristics		Performance					
Essential cr	laracteristics		M8	M10	M12	M16	
Shear steel	failure without lever arm						
TX1	3,700,700						
$V_{Rk,s,fi,30}$	Duration = 30 minutes	[kN]	0,22	0,48	1,33	2,26	
V _{Rk,s,fi,60}	Duration = 60 minutes	[kN]	0,20	0,42	1,00	1,70	
V _{Rk,s,fi,90}	Duration = 90 minutes	[kN]	0,15	0,32	0,86	1,47	
V _{Rk,s,fi,120}	Duration = 120 minutes	[kN]	0,11	0,26	0,66	1,13	
TX1 A4							
V _{Rk,s,fi,30}	Duration = 30 minutes	[kN]	0,44	0,81	2,00	3,39	
V _{Rk,s,fi,60}	Duration = 60 minutes	[kN]	0,35	0,65	1,33	2,26	
V _{Rk,s,fi,90}	Duration = 90 minutes	[kN]	0,26	0,52	1,07	1,81	
V _{Rk,s,fi,120}	Duration = 120 minutes	[kN]	0,22	0,31	0,93	1,58	
Shear steel	failure with lever arm						
TX1							
M ⁰ Rk,s,fi,30	Duration = 30 minutes	[Nm]	0,37	1,12	2,71	6,66	
M ⁰ Rk,s,fi,60	Duration = 60 minutes	[Nm]	0,34	0,97	2,04	5,00	
M ⁰ Rk,s,fi,90	Duration = 90 minutes	[Nm]	0,26	0,75	1,76	4,33	
M ⁰ Rk,s,fi,120	Duration = 120 minutes	[Nm]	0,19	0,60	0,68	3,33	
TX1 A4							
M ⁰ Rk,s,fi,30	Duration = 30 minutes	[Nm]	0,75	1,87	4,07	10,00	
M ⁰ Rk,s,fi,60	Duration = 60 minutes	[Nm]	0,60	1,50	3,39	8,32	
M ⁰ Rk,s,fi,90	Duration = 90 minutes	[Nm]	0,45	1,20	2,71	6,66	
M ⁰ Rk,s,fi,120	Duration = 120 minutes	[Nm]	0,37	1,05	2,17	5,33	
Shear concr	rete pry-out failure						
k ₈			1,0		2,0		
V _{Rk,cp,fi,30}	Duration = 30 minutes	[kN]	1,85	2,34	10,42	25,02	
V _{Rk,cp,fi,60}	Duration = 60 minutes	[kN]	1,85	2,34	10,42	25,02	
V _{Rk,cp,fi,90}	Duration = 90 minutes	[kN]	1,85	2,34	10,42	25,02	
V _{Rk,cp,fi,120}	Duration = 120 minutes	[kN]	1,48	1,87	8,34	20,02	
Concrete ed	lge failure				Star St		

The characteristic resistance V⁰Rk,c,fi in concrete C 20/25 to C50/60 is determined by:

 $V_{Rk,c,fi}^{0} = 0.25 \times V_{Rk,c}^{0} (\leq R90)$ and $V_{Rk,c,fi}^{0} = 0.20 \times V_{Rk,c}^{0} (R120)$

with $V_{Rk,c}$, which is initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature

Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 § 2.2.1. EOTA TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and ≥ 2 x h_{ef} .

In the absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,f} = 1,0$ is recommended

TX1 / TX1 A4

Design according to EOTA TR 020

Characteristic shear resistance under fire exposure - BWR 2